Search results for "Binaries : close"

showing 5 items of 5 documents

The Role Of General Relativity in the Evolution of Low-Mass X-ray Binaries

2005

We study the evolution of Low Mass X-ray Binaries (LMXBs) and of millisecond binary radio pulsars (MSPs), with numerical simulations that keep into account the evolution of the companion, of the binary system and of the neutron star. According to general relativity, when energy is released, the system loses gravitational mass. Moreover, the neutron star can collapse to a black hole if its mass exceeds a critical limit, that depends on the equation of state. These facts have some interesting consequences: 1) In a MSP the mass-energy is lost with a specific angular momentum that is smaller than the one of the system, resulting in a positive contribution to the orbital period derivative. If th…

Physics:relativityX-rays : binariesGeneral relativityAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)pulsars : generalFOS: Physical sciencesrelativity; binaries : close; stars : individual : SAX J1808.4-3658; stars : neutron; pulsars : general; X-rays : binariesAstronomy and AstrophysicsAstrophysicsMoment of inertiaOrbital periodAstrophysicsSpecific relative angular momentumstars : neutronBlack holeNeutron starPulsarstars : individual : SAX J1808.4-3658Space and Planetary Sciencebinaries : closeLow Mass
researchProduct

High-Energy pulse profile of the Transient X-ray Pulsar SAX J2103.5+4545

2005

In two recent INTEGRAL papers, Lutovinov et al. (2003) and Blay et al. (2004) report a timing and spectral analysis of the transient Be/X-ray pulsar SAX J2103.5+4545 at high energies (5--200 keV). In this work we present for the first time a study of the pulse profile at energies above 20 keV using INTEGRAL data. The spin-pulse profile shows a prominent (with a duty cycle of 14%) and broad (with a FWHM of ~ 51 s) peak and a secondary peak which becomes more evident above 20 keV. The pulsed fraction increases with energy from ~ 45% at 5--40 keV to ~ 80% at 40--80 keV. The morphology of the pulse profile also changes as a function of energy, consistent with variations in the spectral componen…

PhysicsX-rays : binariesScatteringAstrophysics::High Energy Astrophysical Phenomenapulsars : individual : SAX J2103.5+4545Astrophysics (astro-ph)Phase (waves)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsRadiationAstrophysicsSpectral linePulse (physics)Full width at half maximumPulsarbinaries : closeSpace and Planetary Scienceclose; pulsars : individual : SAX J2103.5+4545; X-rays : binaries [binaries]X-ray pulsar
researchProduct

The broad-band spectrum of Cyg X-2 with INTEGRAL

2005

We study the broad band (3-100 keV) spectrum of Cygnus X-2 with INTEGRAL. We find that the spectrum is well fitted by a Comptonized component with a seed-photons temperature of ~1 keV, an electron temperature of ~3 keV and an optical depth tau ~ 8. Assuming spherical geometry, the radius of the seed-photons emitting region is ~17 km. The source shows no hard X-ray emission; it was detected only at a 3 sigma level above 40 keV. We also analyzed public ISGRI data of Cyg X--2 to investigate the presence of a hard X-ray component. We report the possible presence of hard X-ray emission in one data set.

Physicsstars : individual : Cygnus X-2Astrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Spectrum (functional analysis)FOS: Physical sciencesBroad bandAstronomy and AstrophysicsRadiusAstrophysicsAstrophysicsaccretion accretion diskstars : neutronSpherical geometrySpace and Planetary Sciencebinaries : closeOptical depth (astrophysics)Electron temperatureclose; stars : individual : Cygnus X-2; stars : neutron [accretion accretion disks; binaries]
researchProduct

INTEGRAL long-term monitoring of the Supergiant Fast X-ray Transient XTE J1739-302

2008

In the past few years, a new class of High Mass X-Ray Binaries (HMXRB) has been claimed to exist, the Supergiant Fast X-ray Transients (SFXT). These are X-ray binary systems with a compact companion orbiting a supergiant star which show very short and bright outbursts in a series of activity periods overimposed on longer quiescent periods. Only very recently the first attempts to model the behaviour of these sources have been published, some of them within the framework of accretion from clumpy stellar winds.Our goal is to analyze the properties of XTE J1739-302/IGR J17391-3021 within the context of the clumpy structure of the supergiant wind. We have used INTEGRAL and RXTE/PCA observations…

X-ray transientAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBinary numberContext (language use)AstrophysicsAstrophysicsSpectral lineBinaries : close; Supergiants; X-rays : binaries:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Fuentes de Rayos X [UNESCO]UNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Fuentes de Rayos XAstrophysics::Solar and Stellar AstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Otras especialidades astronómicasAstrophysics::Galaxy AstrophysicsPhysicsAccretion (meteorology)Astrophysics (astro-ph)Astronomy and AstrophysicsLight curveSupergiantsSpace and Planetary ScienceLong term monitoringbinaries [X-rays]Supergiantclose [Binaries]:ASTRONOMÍA Y ASTROFÍSICA::Otras especialidades astronómicas [UNESCO]
researchProduct

Discovery of slow X-ray pulsations in the high-mass X-ray binary 4U 2206+54

2008

Context. The source 4U 2206+54 is one of the most enigmatic high-mass X-ray binaries. In spite of intensive searches, X-ray pul- sations have not been detected in the time range 10−3–103 s. A cyclotron line at ∼30 keV has been suggested by various authors but never detected with significance. The stellar wind of the optical companion is abnormally slow. The orbital period, initially reported to be 9.6 days, disappeared and a new periodicity of 19.25 days emerged. Aims. The main objective of our RXTE monitoring of 4U 2206+54 is to study the X-ray orbital variability of the spectral and timing parameters. The new long and uninterrupted RXTE observations allow us to search for long (∼1 h) puls…

media_common.quotation_subjectAstrophysics::High Energy Astrophysical Phenomenapulsars : general [Stars]X-ray binaryFOS: Physical sciencesOrbital eccentricityAstrophysicsAstrophysicsStars : early-type; Stars : emission-line Be; Stars : binaries : close; X-rays : binaries; Stars : pulsars : generalLuminosityearly-type [Stars]:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Fuentes de Rayos X [UNESCO]UNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Fuentes de Rayos XAstrophysics::Solar and Stellar AstrophysicsEccentricity (behavior)binaries : close [Stars]media_commonLine (formation)PhysicsAstrophysics (astro-ph)Astronomy and AstrophysicsOrbital periodLight curveNeutron starSpace and Planetary Scienceemission-line Be [Stars]binaries [X-rays]Astrophysics::Earth and Planetary AstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Estrellas:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Estrellas [UNESCO]
researchProduct